Using Deuterium and Oxygen-18 Stable Isotopes to Understand Mechanisms of
Stemflow Generation as a Function of Tree Species and Climate #59083
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Figure 8. 6D and
8180 isotopic
analysis of the six
tree species, TF,
and PG after all 11
sampled storm
events. The GMWL
shows variation of
the SF water due to
natural processes of

Introduction " This study was conducted at Sessum’s Natural Area (SNA), an old 570 (%0)
rkville, MS (TAB 1 & FIG 5).

R )

" Stemflow (SF) is a type of rain partitioning by the forest canopy that
redirects water down tree trunks (FIG 1). During this process,
nutrients are leached from tree surfaces delivering highly enriched

water to the tree base (FIG 2)U1.
= Throughfall (TF) is the water

intercepted by the canopy that falls
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whereas the Local
Meteoric Water
Line (LMWL)
exhibits a local
scale of variation

(see FIG 3)DI,

B Mechanisms of water exchange during 160\ Figure 4. Bark roughness is quite variable between the six species.

the SF process have not been well
established and prevent full integration
SMOOTH BARK

" Storm events with at least 12mm of rainfall were sampled.

" One gross precipitation (PG) gauge was used along with four TF

of this process into hydrologic and More SF LessE collection apparatuses at SNA (FIG 2) to compare isotopic 56
-More residence time CBO ® SO WO ® PO ® CSH ® PNH TF A PG —GMWL -- LMWL

. . . -Less residence time . o .
biogeochemical models that include 5 "\ e of heavy and light compositions to that of SF water signatures. . . .
small-scale SF water cycles and bark  oxygen (80/%0) isotopic compositions and | ®  Water samples were collected in 20mL vials with no head space and | " Results suggest lighter isotopes evaporate out of tree bark, leaving heavy

water storage capacities. P later analyzed for 8D and 60 with laser ablation spectroscopy at isotopes to accumulate in SF water during the next storm event (FIG 9 and 10).
= Stable deuterium (°H/D) and oxygen (**O) isotopic tracers can be used L.SU and expressed relative to the Vienna Standard Mean Ocean These results vary between season (T'AB 2) and species.
to follow water through hydrological cycles. Lighter isotopes (‘H and Water (VSMOW), according to the following equation: 5150 (%o) ~ 18
1°0) are more readily evaporated back into the atmosphere from tree . R (sample) 60 50 40 @15
= A 3 |
surfaces!?’l. When SF water evaporates from bark surfaces, 'H and °O 0 /o) R (standara) 1) x 1999 SRZE
are preferentially evaporated, leaving the heavier isotopes (D and °O) — - oht | - £ 0
’ R sampie)—the ratio of heavy to light isotopes in the sample 2
in the tree bark (FIG 3)[%l, = : o T A -k & 0
( ) R dard)=the ratio of heavy to light isotopes of the standard A T o
! 4 : N (standard) _- 3 5 3
= Different tree species (I'AB 1) have unique bark characteristics (FIG 4) e Fioht bark thick == EOE .

: . Ty P . ; 1 ark thickness o I i — —
and variable effects on rain partitioningl*l. We look to examine species- . eg surements wete . AT A N CBO SO WO PO CSH PNH TF PG
specific effects on forest hydrological cycles via stable isotopes. =i bab l‘: 3 P Figure 10. SF volumes (0.69% of PG) after the “March

e | Mkl SRR gl s tree, with a bark gauge to 4t 2016” storm had 2.78cm of PG and 2.12cm of TF
‘ oo U N | s e X 50 - ) )
4 G e s gL SN ° ° v
S determine differences A i (4552 08L s
;ﬁfﬁ@z}\ T vaporation . CBO ® SO WO ® PO ® CSH . .
0 S AN between Speciles (FIG 6), e PNH TE s PG — GMWL - - LMWL Table 2. A description of all collected events at SNA.
50 relation to total volumetric Figure 9. 6D and 6'%0 isotopic analysis of the six tree species, Byent S was wUelTiglEe Sl SR eT s A es
50 : p *Overflowed PG gauge.
2 fl for S TF, and PG after a winter storm event on “March 4%, 2016”.
= uxes were recorded for SF, Event | Season Date PG (cm)| 8D | 380
0 TF, and PG. 1 | Fall |10/26/15-10/28/15 | 2.29 * *
2 | Fall | 10/31/15-11/02/15 | 2.04 | * *
2150 4 aet ° °
R : { Discussion 3 | Fal | 11/06/15-11/09/15 | 1.79 . .
1.5 4
s . 4 | Fall | 11/17/15-11/18/15 | 4.50 * x
-200 =4 u
- 3 CBO displayed the pattern we expected 5 52005 | 206 | - .
g5 @ aa Iy / | 20 -20 13 -10 -5 0 a0, 2 SO e S X\ R v, e : €1 et to see with smooth, medlum-rough bark 6 Fall | 12/13/15-12/14/15 1.16 28 55
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Figure 2. Polyethylene SF collars cut Figure 3. Schematic meteoric water line showing g Aatials RURERR R o coonon o o T that gener ated large quantltles of SF 7 |Winter| 2/21/16-2/22/16 0.61 19 -3.9
longitudinally, were attached to the tree with factors leading to deviations from the §'%0-6D S s WA e L KR o o @ mouo gn S FIG 1 . . . 9 | Winter 3/3/16-3/4/16 2.78 -15 4.6
R O SENTE T ) I s 0. ith 1 r residence time for .
aluminum nails and silicone caulk; TF collectors relationshipl®l. N N QTR0 R | v ( G O) o ower reside Ce. .e & 10 | Spring 3/24/16 1.40 3.5 -2.4
consisted of an 20.3cm diameter funnel attached to | e \ 7 G ; il T “ . A; M < | water on bark surfaces, resultmg 1n 11 | Spring 3/27/16 0.70 24 31
a Nalgene bottle on a 1m high post. [ L G R ARSI PP TN e 0 e 4 - e SN lighter iSOtOPiC composition of SF. 12 | Spring 6/3/16-6/5/16 2.92 -35 -6.3
Ob o o Figure 5. Map of SNA, Mississippi, including Figure 6. Bark roughness of the six evaluated " A better understanding of iS()t()piC variations of inter-speciﬁc SF generation will
]eCtlveS contour lines and canopy area of all six species at SNA. . . . . . .
: : " . . help determine differences in bark water storage capacity of different species
SF volume and isotopic composition (6D and 6'*0) were measured over a | experimental species. , :
: . = ol and bark structures. Thorough analysis of these results will allow for more
one-year period to address three main objectives: Results

accurate hydrological and biogeochemical models to be established.

1. Determine origins and pathways of SF water using stable water isotopes.| , Greatest average bark thickness was in WO (1.56 +0.08cm), followed

2. ldentify differences in S generation mechanisms between tree species. |,y pQ (1,19 +0.13cm), SO (0.95 +0.08cm), CBO (0.95 £0.05cm), PNH| Acknowledgements & References
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